Solve each problem.

Answers

1) A developer was buying land. He bought 8 acres at $\$ 1,662$ per acre. He then split the land he purchased into 3 lots. How much should he sell each lot for just to break even?
2) Adam developed a game for phones that he sold for $\$ 2$. After the first week he discovered he had 5,181 downloads from girls and 6 times as many boys download the game. Of the boys who downloaded it he only had $1 / 3$ who bought the full game. How many boys bought the full game?
3) Emily was trying to save up $\$ 363$. At her job she made $\$ 8$ an hour and she worked 40 hours a week. After paying for her food and other expenditures she ended up only saving $1 / 8$ of her weeks earnings. How much money did she save up each week?
4) Nancy was planning to marathon watch episodes of her favorite show. The show had 50 episodes with each episode lasting exactly 26 minutes. If she planned to spend 2 days watching the show how many minutes should she watch each day?
5) At a potato chip factory there were 94 machines working with each machine able to produce 77 chips a minute. If this is enough potato chips to fill 7 shipping boxes, how many chips are there per box?
6) A king size candy bars costs $\$ 2$ with each candy bar having 1,056 calories. If you bought 4 candy bars and took 3 days eating them (eating the same amount each day) how many calories would you consume a day?
7) Katie's mother had 15 small photo albums filled with 25 photos in each. In order to save some space she bought 5 larger albums with each album having 99 pages. If she wanted to put all her pictures into the large albums, with the same number of pictures in each, how many pictures should be in each album?
8) A donation center had filled up 13 small bins with canned food with each bin containing 24 cans. They plan to send the cans out to 2 food banks but want to give each food bank the same number of cans. How many cans should they give to each food bank?
1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad

Solve each problem.

1) A developer was buying land. He bought 8 acres at $\$ 1,662$ per acre. He then split the land he purchased into 3 lots. How much should he sell each lot for just to break even?
2) Adam developed a game for phones that he sold for $\$ 2$. After the first week he discovered he had 5,181 downloads from girls and 6 times as many boys download the game. Of the boys who downloaded it he only had $1 / 3$ who bought the full game. How many boys bought the full game?
3) Emily was trying to save up $\$ 363$. At her job she made $\$ 8$ an hour and she worked 40 hours a week. After paying for her food and other expenditures she ended up only saving $1 / 8$ of her weeks earnings. How much money did she save up each week?
4) Nancy was planning to marathon watch episodes of her favorite show. The show had 50 episodes with each episode lasting exactly 26 minutes. If she planned to spend 2 days watching the show how many minutes should she watch each day?
5) At a potato chip factory there were 94 machines working with each machine able to produce 77 chips a minute. If this is enough potato chips to fill 7 shipping boxes, how many chips are there per box?
6) A king size candy bars costs $\$ 2$ with each candy bar having 1,056 calories. If you bought 4 candy bars and took 3 days eating them (eating the same amount each day) how many calories would you consume a day?
7) Katie's mother had 15 small photo albums filled with 25 photos in each. In order to save some space she bought 5 larger albums with each album having 99 pages. If she wanted to put all her pictures into the large albums, with the same number of pictures in each, how many pictures should be in each album?
8) A donation center had filled up 13 small bins with canned food with each bin containing 24 cans. They plan to send the cans out to 2 food banks but want to give each food bank the same number of cans. How many cans should they give to each food bank?

Answers

1. \qquad 4,432
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
